

室内環境での多様な曝露経路における

高リスク懸念物質のスクリーニング手法

横浜国立大学 大学院環境情報学府/研究院 〇富澤茉佑香, 小林剛, 亀屋隆志, 田小維, 藤江幸-

- ☆ 室内製品は多様な化学物質を含有しており、 それらの曝露による健康影響が懸念される。
- ☆ 社会では数万種の化学物質が製造・使用され ☆☆☆ うまま 集機 ているが、室内濃度指針値が定められている のは13物質のみである。
- ☆ 新たに指針値が検討されているベンゼンや ナフタレン等の物質もあるが、指針値設定物質 と同等以上の健康リスクがあり、十分な評価や 管理がなされていない物質もあると考えられる。

衣類 (加工剤、洗剤かす) たんす — (塗料、防虫剤など) 畳(加工剤、防虫剤な @##J.55##

室内製品に含有される化学物質の情報を収集・整理してデー -タベースを構築し 室内濃度指針値設定物質の他に今後管理が必要な物質を明らかにするために 各曝露経路における高リスク懸念物質のスクリーニング手法を提案する。

塗料、接着剤、殺虫・防虫剤、プラスチック添加剤として室内製品に含有している 化学物質を中心に1,697物質の情報をデータベース化

+

検討したスクリーニング手法と曝 露経路ごとのスクリーニング結果

高リスク懸念物質は **有害性ランク**と 曝露性ランク を組み合わせてスクリーニング することとした。※(有害性, 曝露性)=(A, A),(A, B),(B, A)を<mark>高リスク懸念</mark>と判定。

想定する曝露経路

※本発表では気相経由である 経路①~④についてまとめる

有害性ランク

有害性ランク	至内濃度指針值、 環境管理参考濃度(大気)、 [mg/m³]	発がん性確度 (IARC他※)	変異原性 確度 (EU他* ⁶)	生殖毒性 確度 (EU他*6)	感作性 確度 (EU他* ^{1,4,6,7})
Α	$C_a \leqq 1.0 \times 10^{-3}$	Group 1		H360	H334
В	$1.0\times 10^{-3} < C_a \leqq 1.0\times 10^{-2}$	Group 2A, 2B	H340	H361	H317
С	$1.0\times 10^{-2} < C_a \leqq 1.0\times 10^{-1}$	-	H341	H362	
D	$1.0 \times 10^{-1} < C_a \le 1.0$	Group 3			
Е	$1.0 < C_a$	Group 4			
	A B C D	有害性 室内温度相計値、 戸ンク 環境管理参考展気(大阪)、 $[m_R/m^2]$ A $C_a \le 1.0 \times 10^{-3}$ B 1.0×10^{-3} C $C_a \le 1.0 \times 10^{-2}$ C 1.0×10^{-2} C 0.0×10^{-2} C 0.0	有害性 室内直接指針。 現境管理参考流文体3)、	有害性 室内温度指針値、 発外人性健康 (IARO他※) 現境管理参考温度(大気)、 (EU他*) $C_{\alpha} \le 1.0 \times 10^{-2}$ Group 1 B $1.0 \times 10^{-2} < C_{\alpha} \le 1.0 \times 10^{-2}$ Group 2 B $1.0 \times 10^{-2} < C_{\alpha} \le 1.0 \times 10^{-2}$ Group 3 H341 D $1.0 \times 10^{-2} < C_{\alpha} \le 1.0 \times 10^{-1}$ Group 3 Group 3	有害性 宝魚漁食指針像、 発気が人性健康 環境管理参考漁費(大祭人) (ARC他家) (EU他*) (EUW*) (EU

- ☆ 有害性ランクは各基準値および環境管理参考濃度と 各確度情報から最も高ランクとなる毒性情報を用いて 決定した。※経口経路では感作性以外でランク分け。
- ☆ 根拠情報が同じ場合は確度情報の方が高ランクとなる 場合でも定量情報を優先することとした。
- ☆ 発がん性の情報が得られているものに関しては、 変異原性よりも発がん性の情報を優先することとした。 ※表は吸入曝露の有害性ランク

曝露性 ポイント合計

製品使用形態 ランクポイント (1~3点) ※経路により異なる

(例)吸入(経路①),経皮(経路②) 至内級及パ型的"南級及ビルウド州ン製物 「無理和"は、一般では、一般では、 「無理和"は、一般では、 「無理"は、 「是"は、 「是"は、 「是"。 室内無度が長期・他無度となる使用の製品 室内製品の表面の加工に使用する整料・ワックスなどの製品、 接着剤のような使用時に揮発する製品、 含有の植物油のような材料に含有し室内への放散が考えられる物質

曝露性ランク

化学物質量 ランクポイント (1~3点) ※全経路共通

50 ≤ x kg以上 10 ≦ k<50 ka未満100aオーダー

0.1 ≦ 🕳 < 1 化学物質量ランク A(3点) B(2点) C(1点) ボイント合計 [点] 8,7 6,5,4 3,2

さらに**体内蓄積可能性**の考慮 曝露性ランク A B C D E ポイント合計 7 以上 6 5 4 3 以下

※吸入では $logP_{OA}$ ≥4.8 ∩ $logP_{OW}$ ≥3.5 ⇒ 曝露性ランク2ランクアップ

※経口・経皮での体内蓄積可能性は、 $3.5 \le logP_{ow} < 5.3 \Rightarrow$ 曝露性ランク1ランクアップ $5.3 \le logP_{ow} \Rightarrow$ 曝露性ランク2ランクアップ

【経路①のスクリーニング結果】

A

有害性ランク

42

(有害性,曝露性)=(A, A) 17物質について

本手法の妥当性が確認された。

関する調査の必要性が示唆された。

B C D E

46

44* 111

16 12 15 12 (C, C)…フェノフガル (D, A)…キシレン * は指針値設定物質の存在を示す。(D, D)…テトラデカン

♠ (A, A)の17物質は比較的使用量が多い製品に含有している

物質であった。主な製品は、塗料・接着剤、ゴム製品、 シロアリ駆除剤・殺虫剤・農薬の大きく3つに分類できた。 ✿ (A, A)の17物質中10物質は、<mark>揮発性が小さいが体内蓄積</mark>

性があることで曝露性ランクが高くなった。

☆ 室内空気での検出事例があるのは17物質中6物質で

4物質(フェンチオン、ディルドリン、クロルピリホス

そのうち揮発性は低いが体内蓄積可能性が高い物質は

シフルトリン)あり、前2物質は基準値相当の濃度を超える

検出事例がある。

☆ 指針値設定物質が比較的高リスク懸念と判定されたことから

♪ 測定事例がない物質の詳細調査の必要性や体内蓄積可能性に

製品使用形態ランク+化学物質量ランク+揮発性等ランク

大気への移行し易さを蒸気圧や沸点のような物性値と微粒子 としての排出の可能性を考慮して揮発性等ランクを決定した。 1ランク変わるごとに蒸気圧が10倍変化するようにした。

揮発性等ランクの定義

a (3点)	25℃付近で気体 25℃付近での蒸気圧が76Torr以上の液体または固体
- (- ////	常圧での沸点が89℃以下の液体
	25℃付近での蒸気圧が7.6Torr以上76Torr未満の液体または固体
b (2点)	常圧での沸点が89℃を超え、150℃以下の液体
	微粒子として排出される可能性がある固体
. (1 ±)	25℃付近での蒸気圧が0.76Torr以上7.6未満の液体または固体
c (1点)	25 で行近での蒸気圧が1./6 Torr以上/.6未満の液体または固体 常圧での沸点が150℃を超え、220℃以下の液体
	25℃付近での蒸気圧が0.76Torr未満の液体または固体
d (0点)	常圧での沸点が220℃を超える液体
	いずれも不明なもの

指針値設定物質のスクリーニング結果

指針電販定物質のスクリーニング商長
(A A)・ホルムアルデヒド、
ダイアジン、クロルビリホス
(B, A)・・バラジウロベンゼン、
フタル酸シュ・ブチル、
フタル酸シュ・ブチル、
(E, C)・・スチレン
(C, C)・・フェンブカルブ
(C, C)・・フェンブカルブ
(C, C)・・フェンブカルブ
(C, C)・・フェンブカルブ
(C, C)・・フェンブカルブ
(D, A)・・より・ン

経皮曝露(経路②)

製品使用形態ランク + 化学物質量ランク + 伊倉透過性ランク

曝露経路ごとに化学物質の摂取量は大きく異なるため 吸入曝露での摂取量を基準として同程度の摂取量となる ように皮膚透過性ランクを決定(ポイントを加減)した。

化学物質の摂取量 $24 \times k_{p_b} \times C_{Air} \times BSA \text{ [µg/d]}$

皮膚からの

化学物質の摂取量が等しくなる kpbは

。。は下の推算式*1)を用いて算出 $k_{n,h} \sim 0.74 \log(K_{ow}) - 0.0722(Mw^{2/3}) - 5.252 - \log(H)$ k_{p_b} : 皮膚透過係数 $^{*1)}$ [m/h]

C:室内濃度 [µg/m³] BSA: 体表面積 [µg/day] (=1.6 [m²]*²)

【経路②のスクリーニング結果】

皮膚透過性ランクの定義

皮膚透過係数 ランク a (+2点) $1.2 \leq \log k_{\rho,b}$ b (+1点) $0.2 \le \log k_{\rho,b} \le 1.2$ c(±0点) $-0.8 \le \log k_{\rho,b} < 0.2$ $-1.8 \le \log k_{ob} < -0.8$ d (-1点) f (-3点) $-3.8 \le \log k_{\rho,b} < -2.8$ g (-4点) $\log k_{pb} < -3.8$

指針値設定物質のスクリーニング結果

491物質		有音性ブンツ						
		A	В	C	D	E		
曝露性ランク	A	3	6	4	12	32		
	В	7	17	13	6	35		
	C	6	18	6	10	17		
	D	9	20	15	17	26		
	E	29	52	41	44	46		

(D, E) …キシレン、テトラデカン

- ☆ (A, A)にはグリオキサール、エチレンジ アシ、トラロ外リンの 3物質がスクリーニングされた。前2物質は分子量Mwが 小さく皮膚透過性が高いと考えられる。トラロ 外リンは、 体内蓄積可能性により曝露性ランクが高くなった。
- ☆ 高リスク懸念物質となった16物質のMwは約30~670と幅が あったが、Mwが比較的小さい物質は皮膚透過性、Mwが い物質は体内蓄積可能性により高リスク懸念となった。
- ☆ 指針値設定物質はホルムアルデヒドが(A, B)で高リスク懸念と なった。指針値設定物質の曝露性ランクは全体的に低かった

経口曝露(経路③④)

製品使用形態ランク+化学物質量ランク+

水の摂取体積

c (-1点)

d (-2点)

e (-3点)

f (-4点) -0.5 < logH

曝露経路ごとに摂取する曝露媒体の体積は大きく異なる。 物質の吸入曝露での摂取量を基準として飲食物濃縮度ランクを

決定(ポイントを加減)した。 呼吸による

10,000倍

空気の摂取体積 20 [m3/d]

 $2.0 \times 10^{-3} [m^3/d]$ 約180,000倍

油分の摂取体積: 1.1×10-4 [m³/d] 飲食物濃縮度ランク(水および油)の定義 水分含有飲食物 油含有食品 (無次元ヘンリー定数) (octanol-air分配係数) $logH \le -4.5 5.8 < logP_{OA}$ a (+1点) b (±0点)

水(または油)経由 での経口経路は、

空気と水(油)の分配 を表す無次元ヘンリー $-4.5 < logH \le -3.5$ $4.8 < logP_{OA} \le 5.8$ 定数 H (オクタノール空気 -3.5 < logH ≦-2.5 3.8 < logP_{OA} ≦ 4.8 分配係数 Poa)により、 $-2.5 < logH \le -1.5$ 2.8 $< logP_{OA} \le 3.8$ 飲食物濃縮度ランク $-1.5 < logH \le -0.5 | 1.8 < logP_{OA} \le 2.8$ を考慮する $logP_{OA} \leq 1.8$

【経路③④のスクリーニング結果】 水分含有飲食物経由(経路③)

油含有食品経由(経路④) 有害性ランク A B C D E A B D

有害性ランク 曝 A 器 B C フ D

水溶性かつ脂溶性である物質が多くあり、水経由と油経由 の高リスク懸念物質には同じ物質が見られた。

(ex) 両経由で(A, A): ホルムアルデヒドとジコホル ☆ 指針値設定物質については

水経由ではホルムアルデヒドとダイアジル 油経由では上の2物質に加えて、パラジクロロベンゼン、 フタル酸ジ-n-ブチル、フタル酸ビス(2-エチルヘキシル)が 高リスク懸念となり、長時間保存できる飲食物は注意が必要

753物質

曝露性ランク

A

В

C

D

- ✿ 室内環境中の製品に含有している化学物質1,697物質の情報を集約したデータベースを構築した。
- ☆ 経路ごとに化学物質の摂取量が同程度となるように考慮したスクリーニング手法を構築し提案することができた。
- ✿ 複数経路で高リスク懸念物質にスクリーニングされた物質(ホルムアルデヒド、グリオキサール、エチレンジアミン、ディルドリン等)も見られた。
- ☆ 高リスク懸念物質で特に調査事例の見られない物質に関しては詳細な調査の必要性が示唆された。

※ 本研究は、厚生労働科学研究費補助金「室内環境中の未規制物質の網羅的解析に関する研究」(代表: 静岡県立大学 雨谷敬史先生) (H26-化学・一般-005)による助成を受けて実施しました。ここに記し、謝意を表します。